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The steady, two dimensional, incompressible flow of a viscoelastic fluid past a 
wedge of 90 degrees coated with the viscoelastic material is studied theoretically 
using constitutive equations proposed by Oldroyd in 1958. The effect of diffusion 
of the coating as well as its material properties (viscosity, relaxation time, 
retardation time, etc.) on the frictional force is investigated. 

A boundary-layer analysis is performed on the constitutive equations as well 
as on the momentum equations. A similarity transformation is found for the set 
of boundary-layer equations. Series expansion and Laplace’s method are em- 
ployed to obtain the solution in the asymptotic series of gamma functions. 

The results obtained show that: 
(i) The thinner displacement thickness does not necessarily imply a large 

frictional force for the viscoelastic flow. 
(ii) For a homogeneous viscoelastic flow, the frictional force increases as the 

degree of dilatancy of the material increases, and decreases with increasing 
degree of pseudo-plasticity of the material. 

(iii) For a non-homogeneous viscoelastic flow with given material constants, 
depending on whether the material is pseudoplastic or dilatant and on the ratio 
of the material concentration of outer flow and the concentration at  the body, 
the frictional coefficient will decrease or increase from that of the homogeneous 
flow with the concentration at the body as the Schmidt number increases, and 
will approach a limit when the Schmidt number becomes very large. This limit 
is the frictional coefficient of the homogeneous flow with the concentration of the 
outer flow. 

1. Introduction 
Many rheological models have been proposed to describe the mechanical be- 

haviour of viscoelastic materials. In  1962 Williams & Bird discussed these pro- 
posed models and concluded that of the relatively simple ones, Oldroyd’s model 
(1958) is the most reasonable one to represent viscoelastic liquids at  the present 
time. They also used the model to study steady viscoelastic flow in tubes. By a 
proper choice of material constants they obtained results showing good agree- 
ment with experimental data up to moderate rates of shear (Williams & Bird 
1962 a;  Fredrickson 1964). This model exhibits qualitatively the main non- 
Newtonian flow properties observed in flowing viscoelastic liquids such as poly- 
mers and colloidal solutions. Those properties are: a variable apparent viscosity 
which decreases with increasing rate of shear in simple shear, a Weissenberg 
climbing effect, and a Robert- Weissenberg normal stress pattern. 
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In  this study Oldroyd's (1958) model has been used to describe the mechanical 
behaviour of viscoelastic materials for a steady, two-dimensional, incompressible 
flow past a semi-infinite flat plate coated with viscoelastic materials. The outer 
flow can be either a solvent or a solution of the coating. For the purpose of analysis 
it is assumed that the mixture of the coating in the main flow is of smalI enough 
concentration to have constant diffusivity as well as constant density. The 
governing equations of motion and diffusion are obtained by a boundary-layer 
analysis. It is found that the set of partial differential equations has a similarity 
solution only when the external stream velocity is proportional to the cube of 
the distance along the plate. This represents a flow of Palkner-Skan type past a 
wedge of 90 degrees. 

2. Governing equations 
A .  Constitutive equations 

For the idealized viscoelastic liquids considered here, the stress sii at any point 
in the flow may be considered as the superposition of two independent stress 
systems, that is 

in which g,, are the components of the metric tensor, p is a scalar (not necessarily 
the pressure), and pi, contains the non-isotropic part of the stress tensor. In  1958 
Oldroyd proposed a mathematical model for pi, which qualitatively describes 
many effects observed in real viscoelastic fluids. The proposed rheological equa- 
tions of state relatingpi, and the rate of deformation tensor 

Sij = -Pgij+p%j, 

aij = 4(aui/axj + au,/axi) 
are 

Here p, A, and A, are the viscosity, relaxation time, and retardation time of the 
material, respectively, at very small rates of strain, and p l ,  p,, vl, v2 and p,, are 
five material constants with the dimension of time. 9 / 9 t  is the Jaumann deriva- 
tive, and ui are the components of the velocity vector. 

The Jaumann derivative is a time derivative of the components of a tensor as 
measured with respect to a rigid co-ordinate system which translates and rotates 
with a fluid particle. This derivative (as well as Oldroyd's convected derivative) 
satisfies the requirement of invariance of response in rheological equations of 
state. When the Jaumann derivative operates on a second-order tensor with 
components bij and is transformed to the fixed co-ordinates xi, one has in Car- 
tesian co-ordinates (eg. Oldroyd 1968) 

pi, + Al(9pik/9t)  -,ul(p$djk + p i d i j )  + vlpji/djPgi, +pUop$ddilc 

= 3pu[cli, + A 2 ( m i , t / a )  - 2 b ~ ~ a ~ ~ a i  + t ~ ~ a ~ ~ a j f g , ~ ] .  ( 1 )  

in which wij are the components of the vorticity tensor; i.e. 

The Jaumann derivative operating on either. contravariant or covariant com- 
ponents of a tensor will result in the same form since 

9 g i j / 9 t  = 0 and 9gi j /9 t  = 0 ,  

wij = +[(aui/axi) - (au,/axi)]. 



Viscoelastic $ow past a wedge 447 

where g,, are the component,s of the metric tensor. Thus, the use of the Jaumann 
derivative removes an objection against Oldroyd’s convected derivative, which 
in general gives different forms for contravariant and covariant components of 
a tensor. In  any case either the Jaumann or the Oldroyd derivative may be used 
in (1); the only difference is in interpretation of the parameters pl and p,. Some 
of the implications of the constitutive equation ( 1 )  are given by Oldroyd (1958) 
and Williams & Bird ( 1 9 6 2 ~ ) .  

In  the present study a steady, two-dimensional, incompressible fluid flow 
problem is considered. Using Cartesian co-ordinates (2, y) directed along and per- 
pendicular to the body, the constitutive equations (1) along with the continuity 
equation yield 

av au 

-2p -+A, jj- - +- --- 
- (;; ID$;) 2 (a, ay ax a,) (”+”)I ay ax 

= 2pv2[@2+:(*+”2+($)2], 2 ay ax 

1 au av 
- 2p, [ ( ;)2 + ($ + + v2 [ (2) f 2  (ay + + (2) 2]], 

where D / D t  is the substantial derivative, u and v are the velocity components in 
the x- and y-directions, respectively. 

To make ( 2 )  dimensionless, the density p, the viscosity ro, a characteristic free 
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stream velocity Uw, and a characteristic length L are chosen as reference quanti- 
ties. A Reynolds number Re can then be defined as 

Re = pU, L / y o  = 1/e2, say, 
where e 4 1 for the case under consideration. In  order to perform a boundary- 
layer analysis, let 

x = Lx’, y = eLy‘, u = uoour, 2) = €U,V’, p = Topf,  (3) 

(Al ,  42,PO,Pl,P2, V1’ v2) = e ( L I U w )  (A;’ A;,P;,P;,p;’ 4’ v;), (4) 

(P,,X% Pal, Pyy,P,,,) = ePU:(P;x, P3:y, Pby, PLL ( 5 )  

where primed quantities in (3) and (4) are assumed to be of order one or less. For 
the purposes of the present analysis, in writing (4) it  was assumed that the order 
of the seven dimensionless material constants are all equal to or less than that 
of e. This requirement ensures that the flow of a Newtonian fluid will be a limiting 
case. Theorder of magnitude of stresses shown in (5) is a consequence of (4) for 
large Reynolds number. This can be verified by the substitution of (3) and (4) 
into (2). 

After the substitution of (3)-(5) into (2), one can, upon neglecting higher order 
terms in e, obtain explicit forms for stresses in terms of the shear rate. They are, 
in dimensional forms : 

It is noted that (6)-( 11) show that the state of stress at  any point in the boundary 
layer is exactly the same as that in a steady simple shearing flow (Oldroyd 1958). 
Equation (7) indicates that in general the apparent viscosity, defined by 

depends on the shear rate and has the limiting values 

Equations ( G ) ,  (8) and (9) also show that the normal stresses are in general un- 
equal, and that to obtain a two dimensional flow a stress pzz normal to the flow 
has to be provided. 
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The seven material constants A,, pl, etc., and the viscosity ,u are normally 
functions of the concentration of the viscoelectric component of the solution and 
hence can be represented by power series in the concentration c. Since the seven 
material constants will approach zero and the viscosity ,u will approach a limiting 
value ( T ~ ,  say) when the concentration c approaches zero, it  is reasonable to 
assume for a dilute material solution (i.e., for small values of c) that 

p = ~, , ( l+yc) ,  A, = ac, p, = bc, ..., etc. (13) 

A, = /3c2, A, = ac2. (14) 

Consequently (10) and (11) can be written as 

In  (13) and (14), a, /I, y ,  etc. are constants for a given viscoelastic material. A 
more general representation of p, A,, etc., in terms of c is possible within the scope 
of the similarity solution (see following), since any function of c alone is allowed 
by similarity for certain boundary distribution of c. However, the linearized 
form is felt sufficient to give an indication of the effects of the variation of the 
material parameters. 

B. Similarity transformation 
For flow rates a t  which (3)-(5) hold, one has a set of boundary layer equations 

aupx + avpy = 0, (15) 
uaulax -+vaulay = u m p x  +p-lapzypy, (16) 

a(P-Pp,,)laY = 0, (17) 

in which x and y are Cartesian co-ordinates along and perpendicular to the body, 
u and u are the components of mass average velocity in x- and y-directions and 
p is the mass average density of the solution. Since the problem considered is the 
one with diffusion process, the boundary-layer equation of diffusion is also one 
of the governing equations. In  a similar manner it is found to be 

(18) 

where pc is the mass density of the coating and K is the mass diffusivity of the 
binary system. 

Uap,Iax + vap,lay = Ka2pc/ay2, 

The boundary conditions of the problem are 
at y = 0: u = v = 0 ,  pG = pc,; 

as y-fco: u+U(x),  pC+pcl. 

It is assumed here that the dissolved viscoelastic material at the plate has a 
constant concentration pe,, and that the external flow is a solution of the coating 
with concentration pc,. When the outer fluid is Newtonian, pc, is zero. 

The general solution of the system of partial differential equations (15)-( 18) 
with the complicated shear stress-shear rate relation (7)  is extremely difficult. 
A similarity transformation is sought to  simplify the mathematics of the prob- 
lem and to illustrate the general behaviour of the flow. From the continuity 
equation (154, a stream function $(x, y) can be introduced such that 

29 
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Letting 

with the expression (7)  for shear stress, the boundary-layer equations (16) and 
(18) for the dilute viscoelastic solution take the forms 

in which the subscripts x and 7 denote the differentiation with respect to x and 7, 
respectively, and S = v 0 / ~ p  is the Schmidt number. The velocity of the external 
flow, U(x) ,  and the two arbitrary functions a($) and b ( x )  will be chosen such that 
(23) and (24) can be reduced to ordinary differential equations. This implies that 
the velocity profiles as well as the concentration profiles are similar at all the 
positions 2. 

The two possible similarity transformations of the problem are discussed as 
the following : 

(i) If  the velocity of the outer flow, U ,  varies with x, (23) and (24) can be written 

respectively, if one chooses 

where K~ and m are arbitrary constants. Equation (25) indicates that if the 
material constant y is zero or if m is equal to 2, the set of partial differential 
equations (15)-( 18) can be transformed into a set of ordinary non-linear differ- 
ential equations. In  order to satisfy the similarity requirement the concentration 
at the boundary has to be proportional to a(x) zz [U(X)]"-~ .  Thus for m equal 
to 2 the concentration at the body is a constant. 

(ii) When the external flow has no pressure gradient and U is a constant, (23) 
and (24) become 

where now b ( ~ )  = ( ~ K ~ U X ) ) ,  ~ ( x )  = K 2 b ( X ) ,  (30) 

where K~ and K~ are arbitrary constants. Again, if y is zero, the boundary-layer 
equation of motion and diffusion for flow past a semi-infinite flat plate with zero 
pressure gradient can be reduced to  ordinary differential equations. The con- 
centration at the body for this case now has to be proportional to x* in order to 
make the transformation valid for the problem. 
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It is clear that the two possible transformations are valid whenever the viscosity 
p and the seven material constants A,, ,ul, etc., are all proportional to a power of 
the concentration. 

C .  Governing differential system 

In  general the viscosity of a viscoelastic liquid depends on the concentration of 
the solution. Therefore, if this is to be included in the problem, from the above 
analysis the only similarity transformation one can have for the problem is that 
when m equals 2. Now if the arbitrary constants K~ are chosen such as 

then (22) and (27) give 
K1 = E-3, K 2  = 3, K3 = CO/K1, 

UP 3 uxy 3 
U ( 4  = Ex4 7 = Y (ZJ > @(x,y) = ( T O )  f(r), c = cog(7). 

f;-2ffvV- 1 = 3-  a7 [ ( 1 + R g ) f ~ , ( l + A 9 2 f ~ ~ ) l ( l + B g ~ ~ ~ ) l ,  

(31) 

This transformation implies that the flow problem is a special type of flow, that 
is a flow of Falkner-Skan type past a 90 degree wedge (Meskyn 1961). The trans- 
formed governing differential system for this special flow is 

d 
(32) 

- %Sfq?) = g,,. (33) 

at q = O :  f = f = O ,  g = 1 ,  (34) 

as 7 - t ~ :  f7+ 1, g-tg(c0) = cJco. (35) 

Q, = (p/rOE3)*P,,  = (1 + W , , ( O )  [1 +Af&(o) l / [~  + W & ( O ) l .  (36) 

where R = yco, A = a c , 2 E 3 p / y o ,  B = ,$?/a. The boundary conditions (19) and (20) 
now become 

?I 

The coefficient of skin friction, C,, will be given by 

It is seen that the shear stress is a constant along the boundary for this special 
flow. 

3. Method of solution for small values of the Schmidt number 
The governing differential equations (32) and (33) with the boundary con- 

ditions (34) and (35) are next solved. Since the general solution of (32)-(35) cannot 
be obtained in terms of known functions, it is necessary to use either purely 
numerical methods or series expansions. 

The method of series expansions accompanied by Laplace’s method is em- 
ployed here to solve the problem. This method was first used by Meksyn (1956) 
to solve the boundary-layer equation for a Newtonian fluid. Several classical 
problems for Newtonian fluids have been reworked by this method, and the 
results obtained are very striking in that only a few terms in the expansion are 
sufficient to obtain close agreement with accepted numerical results. Later Jones 
(1961) also used the method to study the boundary-layer equations of inelastic 
liquids flowing past a wedge. 

In  applying the method to solve (32) and (23), one first expresses the dependent 
variables f(y) and g(7) in power series of y such that 

(371, (38) 
An Bn 

n=O n. n=o n! f ( r )  = z 7 7 Y  drl) = c -rn9 

29-2 
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in which A, and B, are constant coefficients to be determined. The expansions 
in (37) and (38)  are valid only for sufficiently small values of 7. By using the 
boundary conditions (34)  one finds, from (37)  and (38) that 

A, = A ,  = 0, B, = 1. 

Substituting the expansions (37)  and (38 )  into (33) ,  the coefficients of the same 
power of 7 in both sides of the equation must be identical. This gives the relations 
between the B, and A,, which are found to be: 

B, = 0, B3 = 0, B, = -2XA,B,/3, etc. (39)  

Similarly, the substitution of (37)-(39) into (32)  yields 

A, = [ 1 +  3B,A,M0+ BA!- 2B,A;I,]/Det, 
A, = 2[3B,A3M0 - 3KBE: - 2A,E11, - (E2, + 2A,B,A3)I,]/Det, etc. 

in which 
Det z L 4 2 1 0 - 3 A A ~ ( l + R ) + 3 ( 2 K B A , -  1-R), 

A,(l+R)(l+AA;) 
1 + BA; 

I0 - 3,4A,( 1 + R), K 2 

No R( 1 + AA;) - 2KBA2, 

I, -B-3AA3(1+R)-3ARB1A,, El A3+A,B,. 

Equations (39)  and (40) indicate that all of the expansion coefficients A ,  and B, 
can be related to A,  and B, for given parameters A ,  B, R and S. The remaining 
unknown coefficients A,  and B, are determined by the boundary conditions (35).  

Integration of the diffusion equation (33) twice gives 
P n  

g(7)  = 1 + B, e--F(T)dr J o' 

2X 1 
in which P(7) = 1 f(7) dy, B, = [g(co) - 1 ] / /  e-F(7)dy. (42)  

0 0 

It is seen from the series expansion that the integral in (41) has a col (saddle 
point) a t  7 = 0. Laplace's method (Copson 1946) can then be used to provide an 
asymptotic expansion for g(7),  that is 

in which I', are incomplete gamma functions; the corresponding value of y for 
a given r can be obtained from the relation 

The coefficients b, in (43)  and (44)  are found to be 
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Application of the boundary conditions (35) gives 

This is the first of the two relations which will be used to determine the unknown 
coefficients A ,  and B,. To obtain the second relation the boundary-layer equation 
of motion (32) is used. This equation can be rewritten in the form 

in which 

integration of (47) once yields 

and a further integration gives 
f,?l(7) = e-p1(7)$(7)9 

a form which can be evaluated by Laplace's method. 
Before applying Laplace's method to evaluate (49)' the properties of its inte- 

grand should be investigated. Since the form of F(7)  indicates that the integral 
in (42) has a col of order two at 7 = 0, the function F,(v) will dictate that the 
integral (49) also has a col of order two a t  7 = 0. F'(7) is alsoknown to be a positive 
function. When 7 becomes very large, the equation of motion takes the form 

because f, -+ 1, f -+ 7, g -+ g(o0)  and f,, -+ 0 as 7 -+ 00. Integration of (50) yields 

f,, N constant x exp { - $[l+ Rg(00)l). (51) 

Thus, the comparison between (48) and (51) shows that $(7) approaches a 
constant value as 7 -f 00, and can be expected to be a slowly varying function of 
q throughout most of the region for small values of the Schmidt number. How- 
ever, for a large Schmidt number the function H(7) shows that $(7) will be a 
rapidly varying function near the boundary because g,  changes very rapidly 
near the boundary. This implies that the integral in (49) cannot be approximated 
by Laplace's method when the Schmidt number is large unless the integrand is 
rearranged. It will be shown in the next section that the outer flow past the body 
without diffusion is the limit when the Schmidt number approaches infinity, and 
that an expansion of the inner and outer type is better suited for Schmidt 
numbers of the order of 10 or greater. 

The integral in (49) can now be evaluated asymptotically by Laplace's method 
for small Schmidt numbers. It is found that 
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where the coefficients h, are 

The corresponding value of 7 for a given r can be obtained from the relation 

with the coeEcients 

Applying boundary condition (35) to (52)  yields 

1 5 h,r(T). l + m  
m=O 

This relation together with (46) is used to determine the two unknown constants 
A ,  and B, for given values of the parameters A ,  B, R and S. 

It is of course possible to determine A ,  and B, in an analytical form from the 
two relations (46) and (56) if only a finite number of terms in the relations are 
considered. However, since b, in (46) and h, in (56) are rather complicated func- 
tions of A ,  and B,, the expression for general values of the parameters is much 
too cumbersome to obtain, and a trial and error procedure would be necessary 
to determine A ,  and B,. For alarge Schmidt number, (45) indicates that the series 
in the denominator of (46) will converge rather rapidly, but for a small Schmidt 
number the series in (46) is a divergent asymptotic series; therefore, only the first 
few converging terms should be considered in the determination of A ,  and B,. 
After values of A ,  and B, have been determined, the concentration distribution 
of the coating and the velocity profile can be obtained from (43) and (52)’ respec- 
tively. The coefficient of the skin friction can then be calculated from (36), in 
which f,,(O) = A,. 

The series of (54), and (52) and (56), which involve the coefficients 61, and hr,L, 
are in general divergent. These divergences arise because the integral in (49) does 
not involve a large parameter and because the expansion used for #(7) has a 
small radius of convergence about 7 = 0. The sum of a divergent series cannot 
be obtained directly. However, since the sum of a divergent series is the finite 
numerical value of the convergent expression from which the divergent series is 
derived (Euler 1755), it  is possible, by a suitable transformation of the series, to 
obtain an asymptotic series which sums to the correct value. In  the present study 
Euler’s transformation is used. In  the evaluation of a divergent series, Euler’s 
transformation can be repeatedly applied until a convergent expression is 
obtained, and the transformation can be started at  any term of the original or 
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the transformed series. However, if only a finite number of terms is used in 
summing the series, too many repeated transformations will reduce the accuracy 
of the sum because the convergence of these first few terms will be slowed down 
by repeated transformation. 

4. Results and discussion 
Case I. Viscoelastic liquids with homogeneous properties ( g  = 1 throughout the $ow 

region) $owing past the wedge. 

For this case the coefficients B, are all zero, since g = 1. To determine the correct 
value of A,, eight terms of the series (56) are considered. It was necessary to 
transform this divergent series twice using Euler’s transformation. The first 

0.90 

0.85 

0.80 
h 

0 
< P 

0-75 

0.70 

065 

AIB 

FIGURE 1. Effect of the parameters A and B on the slope of the velocity profile at the 
bodywhenR = 0. 

transformation was started at  the very first term of the series, and the second 
transformation at the second term of the transformed series. It is noted from 
the boundary-layer equation of motion that when R = 0 and A/B = 1, the non- 
Newtonian phenomena will not be observed, that is the flow pattern of this case 
is the same as the one due to a Newtonian liquid. The results obtained for various 
values of A and B are shown in figures 1 and 2. 

Figure 1 shows the relation between f,,(O) and the ratio AIB for B = 0-10-0*60 
when the parameter R is zero. Since f,,(O) is the slope of the velocity profile at 
the body, it is legitimate to say that a larger value of f,,(O) implies a thinner 
displacement thickness. Thus, figure 1 shows that the displacement thickness 
increases with increasing AIB for a given B. For the case of a Newtonian liquid, 
that is when AIB = 1, the obtained result f,,(O) = 0.761 is in very good agree- 
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ment with Hartree's (1937) result (0.758). This implies that the method used is 
probably quite accurate. 

Figure 2 shows the relation between the coefficient Cd of the skin friction and 
the ratio AIB for R = 0. In  the Newtonian flow problem, it is well known that the - 
frictional coefficient C, is linearly proportional to f,,(O) under the conditions of 

FIUW 2. Effect of the parameters A and B on the frictional coefficient C, when R = 0. 

the boundary-layer assumption, but the results obtained here for viscoelastic 
liquids do not show such a simple relation. Whilef,,(O) decreases with increasing 
AIB as shown in figure 1, figure 2 indicates that fld increases with increasing AIB. 
Therefore the skin friction of a viscoelastic liquid past the body is rather strongly 
affected by the values of the material constants A,, A,, p,, etc., and a displacement 
thickness thinner than that in a Newtonian fluid does not necessarily imply a 
larger frictional force for viscoelastic liquids. 

The general expressions for normal stresses in terms of given A and B given by 
(6 ) ,  (8) and (9) show a rather complex dependency on the seven material con- 
stants. For the special case which has been shown to predict the general form of 
some experimentally observed relations between steady state and oscillatory 
phenomena, suggested by Williams & Bird (1962 b), that is when 

p, = A,, v1 = $Al ,  po = 0,  p2 = A,, v2 = $A2 ,  

equations (6)-( 9) become, after the similarity transformation, 



Viscoelastic $ow past a wedge 457 

Thus, for pseudoplastic fluids (AIB < 1, i.e. apparent viscosity decreases with 
increasing rate of shear), pxx is a tensile stress while p,, and pZB are compressive 
stresses; for dilatant fluids ( A / B  > 1,  i.e. apparent viscosity increases with in- 
creasing rate of shear), pxx becomes a Compressive stress while pug andpsz become 
tensile stresses. Hence, in order to have a steady, two dimensional, incompressible 
viscoelastic flow, depending upon whether the fluid is a pseudoplastic or a dilatant 
liquid, it is necessary to apply a compressive or a tensile stress normal to the plane 
of the flow. 

0 2 4 6 8 10 

S 

FIGURE 3. Relationship between the Schmidt number S and the frictional coefficient C, 
for pseudoplastic coatings with 3B = 4A = 0.9. 

The effect of the parameter R on either f,,(O) or the frictional coefficient C, can 
be obtained from the results given in figures 1 and 2 by a simple modification. 
It is seen that if the characteristic viscosity used in forming the dimensionless 
quantities is taken to be qo( 1 + R), the equation of motion then obtained is in- 
dependent of R. Thus, for given values of the parameters A,  B and R, the cor- 
responding f,,,,(O) and C, can be found, using figures 1 and 2, from the relations 

( 5 8 )  
f,&q = o , m  =f,,(r = O,R = O ) / P  +R14 

C,(R) = [1+ R]*C,(R = 0 ) ,  

respectively, for given values of A and B. 

Case 11. Newtonian solvents $owing past the coated wedge 

Here the case is considered when the Schmidt number is larger than zero and 
g(m) in (46) is equal to zero. Figures 3,4 and 5 show the relationship between the 
frictional coefficient C, and the Schmidt number S for B = 0.3, R = 0.00-0.08 
with the ratio AIB = 2, 1,  $ respectively. The results obtained here indicate that 
the frictional coefficient C, will increase or decrease from the corresponding value 
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of the homogeneous viscoelastic flow with concentration c,, and approach a limit 
when the Schmidt number increases. It will next be shown that this limit is the 
frictional coefficient of a Newtonian liquid past the wedge. 

For a large Schmidt number, the diffusion layer is much thinner than the 
Prandtl boundary layer. Thus the boundary layer may be divided into two 

FIGURE 4. 

s 

whenA = B. 
Relationship between the Schmidt number S and the frictional coefficient 

0 R = 0.08 
* R=004 

R = 0.00 

0 2 ' 4  6 8 10 
S 

FIGURE 5. Relationship between the Schmidt number S and the frictional coefficient C, 
for dibtant coatings with 3B = 2A = 0.9. 
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regions, the first being a region of constant concentration far from the boundary, 
the second, a region of rapidly changing concentration in the immediate vicinity 
of the coated surface. For the case considered here the concentration of the first 
region is g(o0) = 0, and the governing differential equation for the region is 

f; - 2.f& - 1 = 3.f7,,* 

The governing equations of the thin diffusion layer are (32) and (33). Since the 
diffusion term of (33) is comparable to the convective term and &(q) is expected 
t o  be order one in the diffusion layer, the transformation 

C =  Sfy,  P = fly (59) 

should be chosen for a large Schmidt number. By the transformation (59), 
equations (32) and (33) become 

d/dC[Fgg(l +W(1 +Ag2qg)/(1 +Bg2P&)1 = O ( 8 - 9 ,  (60) 

-2F 3 95 = ggs. (61) 
Integrating (60) once, one has 

FC&l +Rg)(l  +Ag2P&)/(l +Bg2P&) = const. = ro for S-tco. (62) 

This shows that the thin diffusion layer has a constant shear stress 70. From (61) 
it  is known that g decays rapidly and approaches zero as c+m, thus (62) can be 
written as Fgg=ro as c+co and X+w. (63) 

Integration of (63) yields 

I Pc = ~~C+cons t . ,  
F = & T ~ C ~ +  const. x c+ const.,. 

To match the solutions of the two regions it is required that 

f,,(O) = Fgg(@. 

f(0) =f,(O) = 0, 

This implies that ro is the dimensionless shear stress at  the body for Newtonian 
flow past the wedge. Furthermore, (64) satisfies the matching conditions 

Hence as the Schmidt number approaches infinity, the frictional coefficient C, 
has to approach that of the Newtonian case. 

The above analysis shows that the frictional coefficient c d  will approach that 
of a Newtonian fluid as the Schmidt number becomes large. Hence based on the 
calculated results, the curves in figures, 3, 4 and 5 can be extended smoothly to 
approach the Newtonian limit. Due to the fact that only the finite numbers of 
terms are used to obtain the results, some of the calculated results shown in 
figures 3,4 and 5 are away from the expected curves. However, the deviation in 
all cases is less than 1 yo of the total C d .  

Figures 6, 7 and 8 show the relation between the frictional coefficient C, and 
the ratio of parameters A and B for Schmidt numbers S = 0, 1, 3 and 5 when 
B = 0-3 and R = 0.00, 0.04 and 0.08. For f l  = 0 and 1 the calculated results are 
probably quite good, but when the Schmidt number becomes large, the deviation 
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increases due to the method of solution. The curves shown in these figures have 
been adjusted according to figures 3,4 and 5 for Schmidt numbers greater than 3. 

From the results obtained in this case one can conclude that for dilatant coat- 
ings the frictional coefficient C, will decrease with increasing Schmidt number 
and approach the frictional coefficient of the Newtonian case when the Schmidt 
number approaches infinity. If the coating is a pseudoplastic material, the 
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FIGURE 6. Relationship between the frictional coefficient C, and the parameter A for the 
Schmidt number S = 0, 1, 3 and 5 when B = 0.3 and R = 0.00. 
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FIGURE 7. Relationship between the frictional coefficient C7, and the parameter A for 
S = 0, 1, 3 and 5 when B = 0.3 and R = 0.04. 
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frictional coefficient in general will increase and approach that of the Newtonian 
case as the Schmidt number increases; however, for some of the highly pseudo- 
plastic coatings the frictional coefficient will decrease first and then increase to 
approach the Newtonian limit as the Schmidt number increases. 
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c, 0-78 

0.77 

0.76 

0.75 
I 3 1 

I 
o Calculated 
A Predicted from 

figures 3-5 

1 5_ 3_ 
2 I 

AIB 

FIGURE 8. Relationship between the frictional coefficient C, and the parameter A for 
S = 0, 1, 3 and 5 when B = 0.3 and R = 0.08. 

Case 111. Viscoelastic liquids $owing past the coated wedge 

The case where g(0) $. g(c0)  =t= 0 has not been studied in detail because the results 
for this case can be predicted qualitatively from the results obtained in case I 
and case 11. 

If the external flow now considered is a solution of the coating with the dimen- 
sionless concentration g(m), it is expected that the frictional coefficient will in- 
crease OT decrease from that of the homogeneous viscoelastic flow with concentra- 
tion co as the Schmidt number increases, and will approach a limit as the Schmidt 
number becomes very large. However, the limit now is the frictional coefficient 
of the viscoelastic liquid with g(co) flowing past the non-coated wedge as can be 
shown by an analysis similar to that of the previous case. This limit can be 
obtained from figure 2 and (58) by a suitable choice of the values of R, A and E 
because R = yc0, A = ac3pE3/yO),  B = p ~ g ( p E ~ / q ~ ) .  

Since the values for C, for X = 0 and X+co can be obtained from figure 2 and 
(58), the relationship between C, and S can then be predicted a t  least qualitatively 
for the case considered. 

Now, figure 2 and (58) indicate that for dilatant fluids if g(m) < 1, the skin 
friction will decrease with increasing Schmidt number; on the other hand, if 
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g(m) > 1, C, increases with increasing Schmidt number. For pseudoplastic fluids, 
depending on the values of R, A and B, the frictional coefficient C, may either 
decrease or increase with increasing Schmidt number when g(o0) 5 1. 

The velocity distribution of the flow was obtained for case I and case I1 fiom 
(54) and (52) by calculating 7 and f,(q) for a given value of T.  Similarly, the 
concentration distribution of the viscoelastic material can be obtained from (43) 
and (44). Figure 9 shows the velocity profile of the homogeneous viscoelastic 
flow when B = 0.3 and R = 0-00. It indicates that the general form of the velocity 
distribution of the viscoelastic flows is very similar to that of the Newtonian 
flow (A/B = 1). For the viscoelastic liquids having 0 < A/B < 2 ,  the velocity 
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FIGURE 9. 
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FIGURE 9. Velocity distribution of the homogeneous viscoelastic flow with B = 0.3 and 
R = 0.00. 
FIGURE 10. Velocity profile and concentration distribution of the non-homogeneous visco- 
elastic flow with S = 1, B = 0.3 and R = 0-08. 

profiles of the flow will fall between the two curves of AIB = 0 and 2 shown in 
figure 9. 

Figure 10 shows the velocity profile and the concentration distribution of the 
non-homogeneous viscoelastic flow when B = 0.3, R = 0.08 and the Schmidt 
number S = 1. It is seen that the velocity profiles of the liquids with A/B = 4 
and # are both very similar to each other and the deviation from that of the 
Newtonian flow is small. The concentration distributions shown in figure 10 
indicate that the thickness of the diffusion layers is almost independent of the 
material properties and has the same order of magnitude as that of the velocity 
profiles when the Schmidt number equals one. The thickness of the diffusion 
layer will of course decrease as the Schmidt number increases, but the comparison 
of figures 9 and 10 shows that the order of magnitude of the boundary-layer 
thickness is relatively insensitive to the Schmidt number. 
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